Join Spaces, Soft Join Spaces and Lattices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Join spaces , soft join spaces and lattices

The aim of this paper is to initiate and investigate new (soft) hyperstructures, particularly (soft) join spaces, using important classes of lattices: modular and distributive. They are used in order to study (soft) hyperstructures constructed on the set of all convex sublattices of a lattice.

متن کامل

Pseudo-median graphs are join spaces

Bandelt, H.-J. and H.M. Mulder, Pseudo-median graphs are join spaces, Discrete Mathematics 109 (1992) 13-26. Median graphs are known to share a number of geometrica! properties with Euclidean space, as is testified by the fact that median graphs ale (c!osed) join spaces-the segments of the associated join space being the geodesic intervals of the graph. As is shown in this paper the median join...

متن کامل

Database Similarity Join for Metric Spaces

Similarity Joins are recognized among the most useful data processing and analysis operations. They retrieve all data pairs whose distances are smaller than a predefined threshold ε. While several standalone implementations have been proposed, very little work has addressed the implementation of Similarity Join as a physical database operator. In this paper, we focus on the study, design and im...

متن کامل

Similarity Join in Metric Spaces Using eD-Index

Similarity join in distance spaces constrained by the metric postulates is the necessary complement of more famous similarity range and the nearest neighbor search primitives. However, the quadratic computational complexity of similarity joins prevents from applications on large data collections. We present the eD-Index, an extension of D-index, and we study an application of the eDIndex to imp...

متن کامل

A content-addressable network for similarity join in metric spaces

Similarity join is an interesting complement of the wellestablished similarity range and nearest neighbors search primitives in metric spaces. However, the quadratic computational complexity of similarity join prevents from applications on large data collections. We present MCAN, an extension of MCAN (a Content-Addressable Network for metric objects) to support similarity self join queries. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analele Universitatii "Ovidius" Constanta - Seria Matematica

سال: 2014

ISSN: 1844-0835

DOI: 10.2478/auom-2014-0013